Single olivocochlear neurons in the guinea pig. II. Response plasticity due to noise conditioning.

نویسندگان

  • M C Brown
  • S G Kujawa
  • M C Liberman
چکیده

Previous studies have shown that daily, moderate-level sound exposure, or conditioning, can reduce injury from a subsequent high-level noise exposure. We tested the hypothesis that this conditioning produces an increased activity in the olivocochlear efferent reflex, a reflex known to provide protection to the cochlea. Guinea pigs were conditioned by a 10-day intermittent exposure to 2-4 kHz noise at 85 dB sound pressure level. This conditioning is known to reduce damage from a subsequent high-level exposure to the same noise band. Responses to monaural and binaural sound were recorded from single medial olivocochlear (MOC) efferent neurons, and data from conditioned animals were compared with those obtained from unexposed controls. MOC neurons were classified by their response to noise bursts in the ipsilateral or contralateral ears as ipsi units, contra units, or either-ear units. There were no significant differences in the distributions of these unit types between control and conditioned animals. There were also no differences in other responses to monaural stimuli, including the distribution of characteristic frequencies (CFs), the sharpness of tuning, or thresholds at the CF. For binaural sound at high levels, particularly relevant to sound-evoked activation of the MOC reflex during acoustic overstimulation, the firing rates of MOC neurons with CFs just above the conditioning band showed slight (but statistically significant) elevations relative to control animals. Frequency regions just above the conditioning band also demonstrated maximum conditioning-related protection; thus protection could be due, in part, to long-term changes in MOC discharge rates. For binaural sound at low levels, MOC firing rates in conditioned animals also were increased significantly relative to controls. Again, increases were largest for neurons with CFs just above the conditioning band. For equivalent monaural sound, rates were not significantly increased; thus, conditioning appears to increase binaural facilitation by opposite-ear sound. These data indicate that MOC neurons show long-term plasticity in acoustic responsiveness that is dependent on their acoustic history.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise.

Single medial olivocochlear (MOC) neurons were recorded from the cochlea of the anesthetized guinea pig. We used tones and noise presented monaurally and binaurally and measured responses for sounds up to 105 dB sound pressure level (SPL). For monaural sound, MOC neuron firing rates were usually higher for noise bursts than tone bursts, a situation not observed for afferent fibers of the audito...

متن کامل

ENDOGENOUS RELEASE OF OPIATES BY REPETITIVE ELECTRICAL FIELD STIMULATION IN THE GUINEA-PIG AND RAT ILEAL LONGITUDINAL MUSCLE

The effect of repetitive electrical field stimulation and the response of the guinea-pig and rat ileal longitudinal muscle to single pulse stimulations was examined. Single pulse field stimulation produced twitch contraction which was inhibited by repetitive field stimulation (10 Hz, 40V, 0.5 msec for 5 m). This inhibition was largely, though never completely, reversed by naloxone. Contrac...

متن کامل

Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex

Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...

متن کامل

Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways.

In the normal guinea pig, contralateral sound inhibits more than a third of ventral cochlear nucleus (VCN) neurons but excites <4% of these neurons. However, unilateral conductive hearing loss (CHL) and cochlear ablation (CA) result in a major enhancement of contralateral excitation. The response properties of the contralateral excitation produced by CHL and CA are similar, suggesting similar p...

متن کامل

Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality.

Sensitization training with an auditory stimulus produces a general increase in response magnitude across the entire receptive field (RF) of neurons in the primary auditory cortex of the guinea pig (Bakin, J.S. and Weinberger, N.M., Brain Res., 536 (1990) 271-286). To determine if this effect reflects an auditory system-specific process or is caused by a process independent of the training stim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 6  شماره 

صفحات  -

تاریخ انتشار 1998